

Hot topics

Lumasiran in Kidney-Only Transplantation in Oxalosis, with a focus on the 2023 European guidelines

Justine Bacchetta, MD, PhD Bron, France

Kansas City March 2023

Disclosures

- Consultancy and speaker
- Kyowa Kirin
- Alnylam
- Dicerna/Novonordisk
- Biocodex
- Amgen
- Pfizer
- Alexion
- Bayer
- Lilly
- Vifor
- Mylan
- Amolyt

- Research grants
- Kyowa Kirin
- Amgen
- Horizon
- Novartis
- Crinex
- Travel grants
- Kyowa Kirin
- Alnylam

Primary hyperoxaluria(s)

Table 2. Features and Treatment of the Inherited Primary Hyperoxalurias.							
Feature	Type 1	Type 2	Туре 3				
Chromosomal location	2q37.3	9p13.2	10q24.2				
Age at onset	All ages, although mostly in childhood	All ages	All ages				
Presentation Calcium oxalate renal stones, nephrocalcinosis, renal failure		Calcium oxalate renal stones	Calcium oxalate renal stones				
Treatment							
Supportive treatment	Hydration, citrate, pyridoxine	Hydration, citrate	Hydration, citrate				
Transplantation	Liver and kidney	Kidney	Not required — no reported cases of renal failure to date				

Clinical presentations can be very different, especially in the PH1 sub-group

- From the neonatal onset with ESRD within the first months of life
- To the form with nephrolithiasis occuring during teenage or adulthood
- But also « relapse » on a renal graft in a patient with kidney failure of « unknown » origin

Primary hyperoxaluria(s): symptoms

Cochat, NEJM 2013; Hoppe 2012

Infantile oxalosis: the most severe form of PH1

- OxalEurope registry
- 95 patients
- Born between 1980 and 2018

Deesker KIR 2022

PH1: a severe renal disease with a significant mortality

ESPN-ERA-EDTA Registry •

- 9247 patients < 19 years •
- ESRD 1979 2009 .
- 31 countries .
- 100 PH1 .

Other/unknown

1(4)

The timeline of hyperoxaluria

Clinical practice recommendations for primary hyperoxaluria: an expert consensus statement from ERKNet and OxalEurope

Jaap Groothoff¹⁺, Ella Metry¹, Lisa Deesker¹, Sander Garrelfs¹, Cecile Acquaviva², Reham Almardini³, Bodo Beck⁴, Olivia Boyer⁵, Rimante Cerkauskiene⁶, Pietro Manuel Ferraro⁷, Luitzen Groen⁸, Asheeta Gupta⁹, Bertrand Knebelmann¹⁰, Giorgia Mandrile¹¹, Shabbir Moochhala¹², Agnieszka Prytula¹³, Jovana Putnik¹⁴, Gill Rumsby¹⁵, Neveen Soliman¹⁶, Bhaskar Somani¹⁷ and Justine Bacchetta¹⁸

Methods (1)

- Objective : to delineate diagnosis, management, and follow-up of patients with PH
- Consensus document established by a multi-disciplinary team from ERKNet and Oxaleurope
- First a core working group (i.e., the authors of the manuscript)
- Pediatric and adult nephrologists and urologists, biochemists and geneticists
- From 8 European countries
- All members of OxalEurope and ERKNet
- Together responsible for performing a literature review, rating the quality of evidence and writing/grading statements
- During 6 zoom sessions 2021
- + 2 physicians with experience in PH from low resource countries

Methods (2)

- Second an external voting panel
- Members of different international working groups on inherited kidney diseases (OxalEurope, ESPN, ERKNet, ERA), N=36
- 20 pediatric nephrologists, 11 nephrologists, 5 scientists or geneticists
- From 14 countries
- All with an expertise in PH
- Delphi method
- 5-point scale: strongly disagree, disagree, neither agree/disagree, agree, strongly agree
- Requiring at least 70% of agreement for each statement
 - First round for 46 statements
 - 2 statements were discussed again, reworded, agreed among the core working group and re-sent to the working panel
- As such, we propose 48 practical statements on diagnosis and management, including conventional therapy (pyridoxine, hyperhydration, alkalinisation, dialysis & transplantation), new therapies and follow-up of patients with PH

Statements for genetics

	Statements	Grading
Geneti	CS	
1	We recommend genetic testing of each patient with high clinical and/or biochemical suspicion.	A (strong recommendation)
2	We recommend offering genetic counselling to PH patients and their families.	A (strong recommendation)

Pediatric Nephrology https://doi.org/10.1007/s00467-022-05613-2

REVIEW

Genetic assessment in primary hyperoxaluria: why it matters

Giorgia Mandrile¹ · Bodo Beck² · Cecile Acquaviva³ · Gill Rumsby⁴ · Lisa Deesker⁵ · Sander Garrelfs⁵ · Asheeta Gupta⁶ · Justine Bacchetta⁷ · Jaap Groothoff⁵¹⁰ on behalf of the OxalEurope Consortium/Erknet Guideline Workgroup On Hyperoxaluria

Received: 29 March 2022 / Revised: 23 April 2022 / Accepted: 29 April 2022

© The Author(s) 2022

Table 1 Overview of most frequent PH1, PH2, and PH3 mutations

Frequent mutations of Primary hyperoxaluria							
PH type	Gene	Mutation	Protein	Pyridoxine sensitive	Predominant region or ethnicity		
1	AGXT	c.508G>A	p.G170R	+	Caucasian		
		c.33dupC	p.K12fs	-	N/A		
		c.731 T>C	p.I244T	±	Northern Africa and Canary Islands		
2	GRHPR	c.103delG	p.D35TfsTer11	N/A	Caucasian		
		c.404+3_404+6del	Missplicing, p.?	N/A	Asian		
		c.494G>A	p.G165D	N/A	Asian		
3	HOGA1	c.700+5G>T	Missplicing, p.?	N/A	European		
		c.834_834+1GG>TT	Missplicing, p.?	N/A	Chinese		
		c.944_946delAGG	p.E315del	N/A	Ashkenazi Jewish		

Groothoff Nature Reviews Nephrology 2023

Corresponding literature and references can be found in main text. N/A not applicable

Statements for diagnosis

	Statements	Grading
Diagnos	tics	
3	We recommend assessing urinary oxalate excretion, along with creatinine, by 24h urine	A (strong recommendation)
	collection.	
4	We suggest that spot urine collections may be used in place of 24h urine collections where	C (moderate recommendation)
	clinically necessary provided the calculation of oxalate/creatinine ratio	
5	We recommend at least 2 positive urine assessments (Uox > URL) in order to establish	B (strong recommendation)
	hyperoxaluria.	
6	Acidification of urine samples for oxalate assessment can be done at the laboratory within 24	B (moderate recommendation)
	hours, provided the sample is kept at 4°C after collection.	
7	We recommend using age-related reference values in interpreting urinary oxalate/creatinine	B (strong recommendation)
	ratios.	
8	We suggest including urinary calcium oxalate crystal volume measurements, if available, in	D (weak recommendation)
	the diagnostic work-up of PH ¹	
9	We suggest measuring PH urine metabolites (Glycolate, L-glycerate, HOG, DHG) in the	B (moderate recommendation)
	presence of hyperoxaluria.	
10	We recommend confirmation of PH1 by genetic testing where increased urinary glycolate is	A (strong recommendation)
	found in the presence of hyperoxaluria, noting that normal values of urinary glycolate do not	
	exclude PH1.	
11	We recommend confirmation of PH2 by genetic testing where increased urinary L-glycerate is	A (strong recommendation)
	found in the presence of hyperoxaluria.	
12	We recommend confirmation of PH3 by genetic testing where increased HOG and DHG is	A (strong recommendation)
	found in the presence of hyperoxaluria, noting that normal values of urinary HOG do not	
	exclude PH3 .	
13	We recommend measuring plasma oxalate levels only in patients with CKD 4, CKD 5 or 5D.	A (strong recommendation)
14	We recommend interpreting plasma oxalate levels based on reference values taking the	B (strong recommendation)
	impact of kidney failure into account	

Urine or plasma oxalate?

Urine

- Oxalate +++
- Creatinine +++
- Threshold > 500µmol/day

When renal function is normal

Urinary Excretion	Reference Range	Source
24-Hr specimen		
Oxalate, all ages	<45 mg (0.5 mmol)/1.7 m ²	Hoppe ⁴²
Glycolate, all ages	<45 mg (0.5 mmol)/1.73 m ²	Hoppe ⁴²
Random ("spot") specimen		
Oxalate:creatinine		Barratt et al.43
<l td="" yr<=""><td>11.9–207 μg/mg (15–260 μmol/mmol)</td><td></td></l>	11.9–207 μg/mg (15–260 μmol/mmol)	
1 to <5 yr	8.7–95.6 μg/mg (11–120 μmol/mmol)	
5 to 12 yr	47–119 μg/mg (60–150 μmol/mmol)	
>12 yr	1.6–63.7 μg/mg (2–80 μmol/mmol)	
Glycolate:creatinine		Barratt et al.43
<l td="" yr<=""><td>5.4–47.0 µg/mg (8–70 µmol/mmol)</td><td></td></l>	5.4–47.0 µg/mg (8–70 µmol/mmol)	
1 to <5 yr	4.0–61.4 µg/mg (6–91 µmol/mmol)	
5 to 12 yr	4–31 µg/mg (6–46 µmol/mmol)	
>12 yr	2.7–27.0 μg/mg (4–40 μmol/mmol)	
Glycerate:creatinine		Dietzen et al.44
0 to 5 yr	12–177 μg/mg (13–190 μmol/mmol)	
>5 yr	19–115 µg/mg (22–123 µmol/mmol)	
HOG:creatinine, adults	0.1–3.9 µg/mg (0.07–2.8 µmol/mmol)	Belostotsky et al. ¹⁴

Plasma

- Oxalate +++
- Creatinine +++

When renal function is impaired: when eGFR is below 30 mL/min/1,73 m²

Cristalluria as a potential help for diagnosis Genetic analysis as second-line diagnostic tool to confirm the diagnosis

Cochat, NEJM 2013

Groothoff Nature Reviews Nephrology 2023

Statements for conservative management

	Statements	Grading					
Cons	Conservative treatment						
15	We recommend promptly starting conservative	B (strong					
	therapy in all patients with suspected PH	recommendation)					
16	We recommend starting hyperhydration (3.5-4	A-B (strong					
	L/day in adults, 2-3 L/m ² in children, to be	recommendation)					
	consumed throughout 24 hours), in all patients						
	with suspected PH and preserved renal function.						
17	We recommend monitoring hyperhydration	B (moderate					
	based on urinary markers, the frequency	recommendation)					
	depending on disease severity.						
18	We recommend oral administration of potassium	C (moderate					
	citrate (0.1-0.15 g/kg) in patients with preserved	recommendation)					
	renal function						
19	We recommend a balanced diet to PH patients,	D (weak					
	avoiding only few extreme high-oxalate	recommendation)					
	containing products.						
20	We recommend testing pyridoxine	A (strong					
	responsiveness in all PH1 patients and titrating	recommendation)					
	its dosage on urinary oxalate excretion						
	Maximum dose of 5 mg/kg/day						

A vicious circle in hemodialysis At least before RNAi therapies?

ENDOGENOUS LIVER PRODUCTION

4-7 mmol/1.73 m² per day

DIALYSIS REMOVAL

HD= 1-2 mmol/1.73 m² per day in adults and 3-4 in children PD = less clearance But potential interest if combined with HD?

OVERALL

Standard HD (12 hrs/week) Weekly clearance = 2-3 days of endogenous oxalate production Accumulation of oxalate in target organs Bone, vessels, eyes, etc...

Systemic oxalosis worsens in dialysis! RNAi therapies will have no effect on oxalate release from bone...

Oxalate osteopathy as the hallmark of systemic oxalosis

Patients often present with recurrent low-trauma fractures, bone deformities, and severe bone pains: decreased QoL

Bacchetta, Pediatr Nephrol 2010; Bacchetta, Bone 2015; Bacchetta, Pediatr Nephrol 2015; Mallik TJH 2020

Practical consequences for the management (1)

• Increased risk of cytopenias because of the bone marrow invasion

- Resistance to EPO/ESA
- Sometimes blood transfusions required, with the risk of anti HLA antibodies / immunization
- In adults severe anemia in a context of unexplained KF may lead to the diagnosis on a bone marrow aspiration...

• How to evaluate systemic bone storage?

- No gold standard
- No interest of DXA
- Bone biopsy?
- 3T bone MRI?
- 18F-FDG PET/CT and 99mTc-HMDP Bone Scan?

Practical consequences for the management (2)

- Even intensive hemodialysis regimens remove far less oxalate than is endogenously produced
- The frequency of dialysis sessions is more important than the duration of each session or even the membrane type
- Intensive dialysis strategies: 2-3 hours x 6 to 7 days per week
- Additional risk of hypophosphatemia and further mineralization defects
 +++
- Especially in the infantile forms of PH1 undergoing intensive dialysis
- Phosphate supplementation: 1 mmol/kg during the entire session
- Try to optimize the control of other CKD-MBD parameters: acidosis, PTH, 25-D, etc..

Statements for dialysis

	Statements	Grading
Dialys	sis treatment	
21	We suggest considering kidney replacement therapy	X (moderate
	before kidney failure has developed in those PH1	recommendation)
	patients with a high risk for systemic oxalosis due to high	
	plasma oxalate values or those already suffering from	
	comorbidity	
22	In case of no access or response to oxalate lowering	X (strong
	therapies, we recommend intensified hemodialysis, dose	recommendation)
	titrated to clinical condition, plasma oxalate levels and	
	according to what the patient and family can tolerate.	
23	We recommend a high flux hemodialyzer (>1m ² capillary	C (moderate
	surface per 1m ² BSA) with maximal blood flow (>150-	recommendation)
	200 cm ³ /min/m ² BSA) when performing haemodialysis.	
24	We recommend personalising the dialysis regimen based	X (strong
	on clinical observations of oxalosis and plasma oxalate	recommendation)
	values, aiming to keep plasma oxalate values in the	
	range of non PH patients with kidney failure.	

Specificities of plasma oxalate measurements

- All labs do not have the same reference values +++
- Most frequent normal level: < 5 µmol/L</p>
- There may be some discrepancies between labs...
- The follow-up of POx should be performed <u>at the beginning of the dialysis session</u> whatever the type of management
- A non-PH patient in dialysis has Pox levels well above the upper normal limit +++

Groothoff Nature Reviews Nephrology 2023; Hoppe 1999

P-Ox and cardiovascular outcomes in non PH patients...

High Oxalate Concentrations Correlate with Increased Risk for Sudden Cardiac Death in Dialysis Patients

JASSN[®]

High serum oxalate levels in dialysis patients are associated with an increased risk of cardiovascular events and sudden cardiac death.

> Median oxalate concentration of 42.4 µmol/L 4th quartile: P-Ox > 59.7 µmol/L

PH1: a severe renal disease requiring liver/kidney Tx

PH1 and transplantation: a few facts

Data from OxalEurope

- 267 patients with PH1 underwent transplantation between 1978 and 2019
- Data of 244 patients analyzed: 159 CLKTs, 48 isolated KTs, 37 SLKTs

B6 non-responsive

Metry, Kidney Int Reports 2022

PH1 and transplantation: lessons from combined kidney/liver transplantation in pediatrics

- Immediate post-operative period
- Dialysis to discuss even in the absence of delayed graft function
- Hyperhydratation: 3L/m²/day
- Alcalinisation: citrate K (100-150 mg/kg/day)
- Pyridoxine (B6)?
- Patience and time are more important than strength or rage"
- Even in pediatrics, it may take years to correct Uox because of bone release
- Adage from the pioneers « time of hyperhydration after Tx = time spent in dialysis before Tx »

Loras-Duclaux Ped Neph 2016

Statements for transplantation

	Statements	Grading
Transp	lantation	·
25	Liver transplantation for PH should always be performed with complete	A (strong recommendation)
	removal of the native liver	
26	The strategy for either sequentially or simultaneously performed liver	B (moderate recommendation)
	and kidney transplantation should be decided based on the clinical	
	situation and the preference of the local surgeon	
27	We recommend to perform liver transplantation ideally combined with	X (strong recommendation)
	kidney transplantation in PH1 patients with advanced disease	
	(eGFR<30) who do not respond to pyridoxine and have no access to	
	RNAi therapy	
28	Liver transplantation may be suggested in PH2 patients with advanced	C (moderate recommendation)
	disease (eGFR<30)	
29	Isolated kidney transplantation should be considered in PH1 patients	B (strong recommendation)
	with CKD stage 5D who are homozygous for B6 pyridoxine responsive	
	mutations.	
30	We recommend monitoring urinary oxalate and plasma oxalate at least	C (moderate recommendation)
	every 6 months after liver transplantation until normalization (below	
	upper limit) has been established on at least 3 occasions.	
31	We recommend monitoring urinary oxalate and plasma oxalate at least	C (weak recommendation)
	every 6 months after kidney transplantation under B6 therapy or/and	
	RNAi until normalization; thereafter at least once per year.	

RNAi therapies: a novel therapeutic group targeting mRNAs

Two possible targets for RNAi therapies in PH

Figure 1. Hepatic oxalate synthesis pathway. ALN-GO1 targets hepatic GO.²⁷ Copyright clearance center license number 3863190482947.

Liebow J Am Soc Nephrol. 2017; Garrelfs, NEJM 2021; Shee Urology 2021; Hoppe Kidney Int 2021; Baum Kidney Int 2022

Lumasiran: the Illuminate A-B-C studies

• ILLU-A

- Randomized placebo controlled trial 2:1
- 26 lumasiran / 13 placebo
- Age > 6 years
- eGFR > 30 mL/min per 1.73 m²
- Uox 24hr > 0.70 mmol/day per 1.73 m²
- Primary endpoint: % reduction of Uox

Garrelfs, NEJM 2021; Hulton Kidney Int Report 2021; Sas DJ, Genetics in Medicine 2022

Lumasiran: the Illuminate A-B-C studies

ILLU-C

- Single-Arm, Phase 3 Study of Lumasiran
- CKD3b-5, including hemodialysis
- Full-term infants to adults
- Cohort A: no HD
- Cohort B: HD

Nedosiran: the PHYOX studies

PHYOX 1 •

- Randomized, single-ascending-dose, phase 1 study: . PHYOX1
- Safety, pharmacokinetics, pharmacodynamics, and . exposure-response of subcutaneous nedosiran
- 25 healthy participants (Group A) •
- 18 patients with PH1 or PH2 (Group B) .
- Model: fixed monthly dose of 160 mg in adults •
- Mean maxiumum reduction in 24-hr-UOx: 55%, day 57 •
- 67% of patients reached normal or near normal 24-hr-UOx .

PHYOX 2 •

- Randomized, nedosiran versus placebo, 2/1 •
- 29 HP1 and 6 HP2 •
- eGFR > 30•

20

-20 -40 % -60 -80

Injection every month for 6 months •

005

006 (Placebo)

D90 Study visit

D120

D150

D180

D30

BL

D60

Pros and cons of RNAi therapies...

- Clinical trials to date have described the evolution of an intermediate endpoint, namely U Ox and/or POx
- The association between Uox and slope of decline of renal function remains to be completely proved
- No data demonstrating an effect to preserve renal function on the long term yet
- No long term safety data, but other « more ancient » RNAi used for other orphan diseases since 2013 do not yield any safety warning (patisiran and amylosis)
- This kind of therapy is really really expensive...
- And not available everywhere...
- And if available not necessarily available for all patients...
- So, yes we have to agree with all the points listed above...
- ▶ But...

RNAi for all patients with HP1?

Table 2 | Recommended management and monitoring of patients with PH1 on RNAi therapy

Group ^a	Start	Cessation criteria after 6 months of therapy	Six-monthly analyses for 5 years and cessation criteria
Group A (VB6 ⁻ , eGFR >30)	We recommend starting therapy	Uox >1.5 UL or less than a 30% reduction in Uox ^b or a deterioration of the clinical condition or evidence of a SAE°	SAE or deterioration in clinical condition related to RNAi therapy ^a
Group B (VB6 ⁺ , eGFR >30)	We suggest starting therapy, based on patient characteristics (not fully VB6 responsive, severe disease)	Uox >1.5 UL or <30% reduction Uox ^b ; or deterioration of clinical condition or evidence of a SAE°	SAE or deterioration in clinical condition related to RNAi therapy ^a
Group C (VB6⁻, eGFR <30)	We recommend starting therapy	Decrease in Pox <20% from baseline or deterioration of clinical condition or evidence of a SAE ^o	Stop if decrease in Pox is <20% ^{de} from baseline: discuss options if the decrease in Pox is <30% from baseline ^{de} . Also stop treatment if there is evidence of an SAE OR deterioration in clinical condition related to RNAi therapy ^e
Group D (VB6 ⁺ , eGFR <30)	We suggest starting therapy based on patient characteristics (not fully VB6 sensitive, rapidly deteriorating kidney function in case of eGFR 20–30)	Decrease in Pox <20% from baseline ^{d.f} or deterioration of clinical condition as assessed by a committee; or evidence of a SAE°	Stop therapy if the decrease in Pox is <20% ^{2,4} ; discuss options if the decrease in Pox is <30% ^{df} . Also stop treatment if there is evidence of a SAE or deterioration in clinical condition related to RNAi therapy ^e
Group E (no genetic diagnosis, eGFR <30)	We recommend starting therapy with monthly monitoring of Pox levels	Decrease Pox <20% of baseline or deterioration of clinical condition as assessed by a committee; or evidence of a SAE°. Also stop therapy if the suspected PH diagnosis is not confirmed genetically	Not applicable
Group F (no ongoing clinical disease)	We suggest starting therapy in adults and recommend starting therapy in children	Uox >1.5 UL or <30% reduction Uox of baseline; or deterioration of clinical condition as assessed by a committee; or evidence of a SAE°	SAE or deterioration in clinical condition related to RNAI therapy ^a
Group G (full VB6*)	We do not recommend starting therapy	Not applicable	Not applicable

Follow-up for patients receiving RNAi

Recommended biochemical analyses in patients on RNA interference therapy

Patients with PH and $eGFR > 30 ml/min/1.73 m^2$

- Should be monitored every 3–6 months during the first year or therapy and thereafter every 6 months for 5 years, and thereafter once yearly
- Analyses should include assessment of urinary levels of oxalate, glycolate, citrate, calcium and creatinine (2×24h), as well as assessment of kidney function, electrolytes, vitamin B6 level (if indicated), liver enzymes, ultrasonography of bone and heart (including speckle tracking) and an eye examination

Patients with PH and eGFR <30 ml/min/1.73 $m^2\,or\,stage\,5D$ chronic kidney disease

- Analyses that should be performed every 3 months include assessment of plasma oxalate level, kidney function, electrolytes, vitamin B6 level (if indicated), liver enzymes
- Ultrasonography of bone and heart (including speckle tracking) and an eye examination should be performed yearly

Kidney transplant recipients with PH

 Assuming estimated glomerular filtration rate (eGFR) of the transplanted kidney is >30 ml/min/1.73 m², follow the guidance outlined for patients with primary hyperoxaluria (PH) and eGFR >30 ml/min/1.73 m² with the addition of plasma oxalate measurements, until parameters are normalized

Proposed algorithm: management in case of PH suspicion

Isolated renal transplant without previous diagnosis of PH1, and lumasiran as rescue

- Case report of a child diagnosed with PH1 after kidney transplant
- Able to maintain kidney function, thanks to aggressive renal replacement therapy and lumasiran

Stone, Am J Transplant 2021

Isolated renal transplant with a previous diagnosis of PH1, and lumasiran/stiripentol as rescue

- PH1 diagnosis before Tx (family screening, p.G170R), decision of isolated kidney Tx because of the absence of extra-renal manifestations and late disease onset
- 51-year-old patient with a biopsy-proven recurrence of oxalate nephropathy after a kidney-only transplantation.
- Combination of stiripentol and lumasiran without adverse events.
- Fourteen months after transplantation, graft function, serum and urinary oxalate levels have remained stable, and kidney biopsy showed a complete regression of oxalate crystals.

Lombardi, AJKD 2023

And now... isolated renal Tx under RNAi? Despite algorithms with quite optimistic thresholds of Pox...

Devresse Kidney Int Rep 2020

Real-life data: isolated renal transplant and lumasiran, first data published in adults

- 39 year-old women with PH1
- 3 years of conventional dialysis
- 1 year of intensive dialysis (among which 7 months of lumasiran)
- Then isolated kidney transplantation
- Delayed graft function, 1 HD session
- Hyperhydration: + 3.5 L / day
- Potassium citrate
- Pyridoxine
- Low-oxalate diet
- Minimum 140 µmol/L
- Biopsy D25: rejection Banff IIA + oxalate deposits
- Corticosteroids pulses + thymoglobulins
- In parallel hyperhydrat + citrate + lumasiran
- 10 sweeks post Tx: creat 169 µmol/L, Pox 21 µmol/L

Early post-transplant recurrence of oxalate nephropathy in a patient with primary hyperoxaluria type 1, despite pretransplant lumasiran therapy

Real-life data: isolated renal transplant and lumasiran, first data published in adults

Joher N, Kidney Int 2022; Metry Kidney Int 2022

Real-life data: our 5 cases from 4 centers

- N=5 patients, genetically confirmed PH1, isolated renal transplantation
- Median age 26 (3-45 years)
- After 13 (5-17) months on lumasiran while on intensive HD
- Isolated kidney transplant, 3 living donors
- Postoperative management: hyperhydration (3 L/m²/day), potassium citrate if tolerated (250 mg/kg/day), and lumasiran (± pyridoxine)
- Delayed graft function: N=0/5
- Dialysis after KTx: N=3/5
- POx: 110 (20-150) μmol/L at lumasiran initiation
- POx: 53 (10-72) μmol/L at KTx
- At 3 months post KTx
 - Pox: 7 (5-26) μmol/L
 - ▶ eGFR : 60 (38-125) mL/min.1,73 m²
 - Uox/creat on spot : 103(67-830) µmol/mmol

In all patients isolated KTx was successful with at least 6 months of followup (in 2 patients more than 1 year of FU)

	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
Age at diagnosis (years)	1.5	17	6	8	8
Age of ESKD (years)	0.5	23	12	27	43
Genotype	Homozygous c.731T>C	Compound heterozygous	Compound heterozygous	Compound heterozygous	Compound heterozygous
		c.[508G>A]; [847-1G>C]	c.[33del];[731T>C]	c.[33dup];[847-11G>C]	c.[33del] ;[454T>A]
Predicted pyridoxin	Unclear	Responsive	Unclear	Non responsive	Partly responsive
Time on dialysis before	10	36	60	0	8
lumasiran initiation					
(months)					
POx (µmol/l) before	110	20	128	150	91
lumasiran initiation					
Plasma Glycolate	598	<8	229	460	49
(µmol/l) before					
lumasiran initiation					
Time between lumasiran	13	10	17	13	5
initiation and Tx					
(months)					
Age at Tx (years)	3	26	18	28	45
Renal graft	Deceased donor	Living donor	Deceased donor	Living donor	Living donor
Pox at Tx (µmol/l)	53	10	65	72	49
Plasma Glycolate	>150µmol/L	114 µmol/l	> 150 µmol/l	>150	68.6
(µmol/l) at Tx					
Delayed graft function	No	No	No	No	No
Dialysis after Tx	Yes	No	Yes	Yes	No
SOC hyperhydration	Yes	Yes	Yes	Yes	Yes
SOC urine alkalinization	Yes	No	After month 4	Yes	Yes
Pyridoxine	Yes	Yes	Yes	No	Yes
Renal lithiasis after Tx on renal US	Yes	No	No	No	No
Nephrocalcinosis of the	No	No	No	No	No
graft on renal US					
Biopsy of the graft	Yes (M3 and M7)	Yes (M2)	No	Yes (M1.5)	Yes
	No oxalate deposit	No oxalate deposit		Oxalate deposit (N=1)	No oxalate deposit
				At M4 : no oxalate deposit	

	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
Evolution at 1 month post Tx			Under dialysis		
Pcreat (µmol/l)	30	133	345	140	142
eGFR (mL/min/1.73 m ²)	125	48	22	60	38
Pox (µmol/L)	14	<5	28	5	14
Uox (µmol/mmol)	519	67	245	78	90
24-hour UOx (μmol/day)	NA	396	NA	1035	1152
Plasma glycolate (µmol/L)	>150	>150	>150	>150	73.9
Evolution at 3 months post 1 x					
Pcreat (µmol/l)	29	150	93	145	144
eGFR (mL/min/1.73 m ²)	125	41	88	60	38
Pox (µmol/L)	14	<5	26	7	7
Uox (µmol/mmol)	830	103	345	67	90
24-hour UOx (μmol/day)	NA	180	NA	1278	1369
Plasma glycolate (µmol/L)	>150	>150	> 150	>150	21.3
Normal UOx/creat depending	11-120	2-80	2-80	<40	60
on age and local values					
(µmol/mmol)					

	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
Evolution at 6 months post Tx					
Pcreat (µmol/l)	34	140	98	154	180
eGFR (mL/min/1.73 m ²)	125	44	88	52	29
Pox (µmol/L)	11	6	ND	7	21
Uox (µmol/mmol)	619	40	283	39	ND
24-hour UOx (µmol/day)	NA	101	NA	840	2046
Plasma glycolate (µmol/L)	>150	>150	>150	>150	39.9
Evolution at 12 months post Tx					BK virus nephropathy
Pcreat (µmol/l)	35				203
eGFR (mL/min/1.73 m ²)	124				25
Pox (µmol/L)	11				19
Uox (µmol/mmol)	479				120
24-hour UOx (µmol/day)	NA				1872
Plasma glycolate (µmol/L)	>150				91.1
Normal UOx/creat depending	11-120	2-80	2-80	<40	60
on age and local values (umol/mmol)					

Leclerc and al, NDT 2022, Collaboration between Lyon, Marseille, Strasbourg and Amsterdam

Take home messages

- New guidelines recently released for diagnosis and management (including RNAi)
- A non-PH patient in dialysis has Pox levels well above the upper normal limit +++

Dialysis in PH1

- The shorter the better, propose intensive dialysis
- This is not because a patient receives RNAi therapy that intensive HD should be stopped: beware of systemic and bone release!

After transplantation

- Even in pediatrics, it may take years to correct Uox because of bone release
- RNAi therapies will not have effects on bone release
- Adage from the pioneers « time of hyperhydration after Tx = time spent in dialysis before Tx » that may be improved by RNAi therapies
- Be pro-active in the immediate post-operative period +++
 - Hyperhydration
 - Alkalinization
 - ► B6?
 - RNAi at the time of transplant to block hepatic synthesis?

A lot of questions remain open

- Pending ancillary analyses in Illu-C: bone release, outcomes after Tx (if performed)
- We need to confirm the feasibility of isolated renal Tx under RNAi therapies on larger cohorts
- Could we imagine performing isolated renal Tx with RNAi and then stop RNAi when the postoperative situation is stabilized in B6 sensitive patients ?

Knowledge in the field is changing quickly...

#rarediseaseday19

