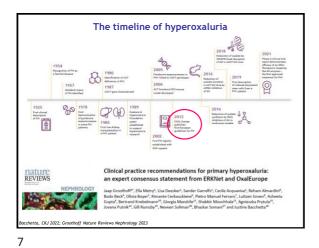
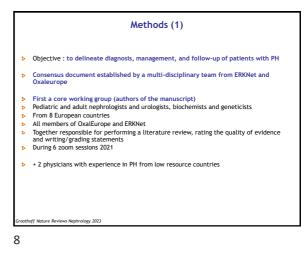


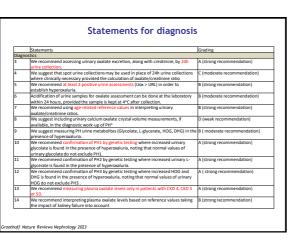
Primary hyperoxaluria(s) Table 2. Features and Treatment of the Inherited Primary Hype Feature Type 1 2q37.3 Type 2 9p13.2 Type 3 10q24.2 Age at onset All ages, although mostly in childhood All age All ages Calc um oxalate renal st ephrocalcinosis, re ralate renal st oxalate re , citrate, pyrido Hydration, citrate Liver and kidney Kidney Not required — no reported cases of renal failure to date Clinical presentations can be very different, especially in the PH1 sub-group 5 From the neonatal onset with ESRD within the first months of life 5 To the form with nephrolithiasis occuring during adulthood But also « relapse » on a renal graft in a patient with ESRD of « unknown » cause 5 NEJM 2013

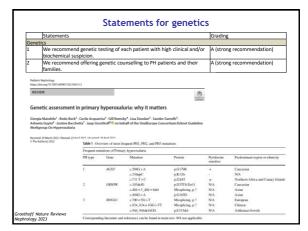
3

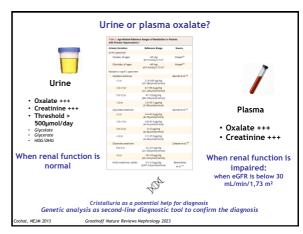

1



PH1: a severe renal disease with a significant mortality survival 80 ī.__ 70 Patient ESPN-ERA-EDTA Registry 60 - PH > 2000 50 ---- PH < 2000 9247 patients < 19 years</p> ESRD 1979 - 2009 ٥Į 2 3 Time on RRT (years) 5 31 countries s. 100 PH1 Table 3. Causes of death in 22 patients with primary hyperoxaluria on renal replacement therapy Cause of Death n (%) Acute complications of dialysis (fluid overload, hyperkalemia) Cardiovascular disease ESRD treatment refused by patien withdrawn for medical reasons Complications of liver transplant Infections (pneumonia, bacterial s 4 (18 3 (14) 3 <u>(1</u>4) withdray Complicat Infections Malignanc Cachexia Other/unk 3 (14 2 (9) 1 (4) nbat cJASN 2012

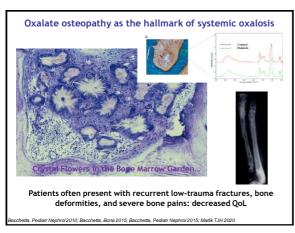






Methods (2) Second an external voting panel ۰. Members of different international working groups on inherited kidney diseases (OxalEurope, ESPN, ERKNet, ERA), N=36 5 20 pediatric nephrologists, 11 nephrologists, 5 scientists or geneticists ×. From 14 countries All with an expertise in PH 24 5 Delphi method 5-point scale: strongly disagree, disagree, neither agree/disagree, agree, strongly agree 24 As such, we propose 48 practical statements on diagnosis and management, including conventional therapy (pyridoxine, hyperhydration, alkalinisation, dialysis & transplantation), new therapies and follow-up of patients with PH ъ ff Nature Reviews Nephrology 2023

9



	Statements	Grading
Cor	servative treatment	
15	We recommend promptly starting conservative therapy in all patients with suspected PH	B (strong recommendation)
16	We recommend starting hyperhydration (3.5-4 L/day in adults, 2-3 L/m ² in children, to be consumed throughout 24 hours), in all patients with suspected PH and preserved renal function.	A-B (strong recommendation)
17	We recommend monitoring hyperhydration based on urinary markers, the frequency depending on disease severity.	B (moderate recommendation)
18	We recommend oral administration of potassium citrate (0.1-0.15 g/kg) in patients with preserved renal function	C (moderate recommendation)
19	We recommend a balanced diet to PH patients, avoiding only few extreme high-oxalate containing products.	D (weak recommendation)
20	We recommend testing pyridoxine responsiveness in all PH1 patients and titrating its dosage on urinary oxalate excretion	A (strong recommendation)
	Maximum dose of 5 mg/kg/day	

A vicious circle in hemodialysis At least before RNAi therapies? ENDOGENOUS LIVER PRODUCTION 4-7 mmol/1.73 m² per day DIALYSIS REMOVAL HD= 1-2 mmol/1.73 m² per day in adults and 3-4 in children PD = less Clearance But potential interest if combined with HD? (**) Constant -PERITONEUN ENCIANSE 20-30 Mil OVERALL Standard HD (12 hrs/week) Weekly clearance = 2-3 days of endogenous oxalate production Accumulation of oxalate in target organs Bone, vessels, eyes, etc... Systemic oxalosis worsens in dialysis! RNAi therapies will have no effect on oxalate release from bone.

14

Practical consequences for the management (2)

Even intensive hemodialysis regimens remove far less oxalate than is endogenously produced

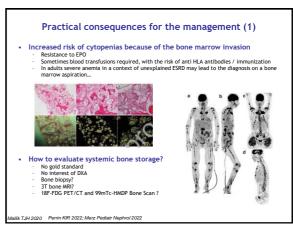
Additional risk of hypophosphatemia and further mineralization defects +++ Especially in the infantile forms of PH1 undergoing intensive dialysis Phosphate supplementation: 1 mmol/kg during the entire session

Try to optimize the control of other CKD-MBD parameters: acidosis, PTH, 25-D,

Intensive dialysis strategies: 2-3 hours x 6 to 7 days per week

produced The frequency of dialysis sessions is more important than the duration of each session or even the membrane type

15

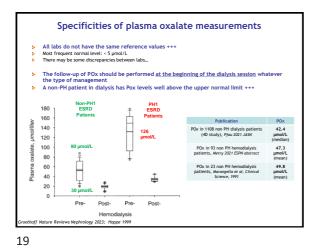

•

•

.

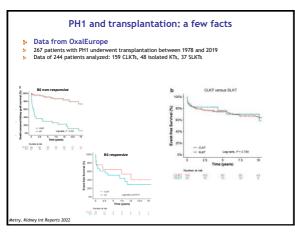
. etc..

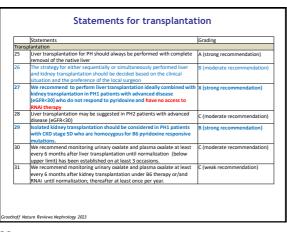
13

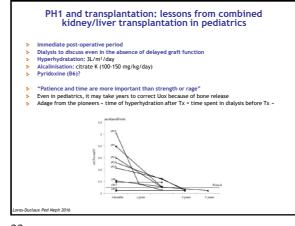


16

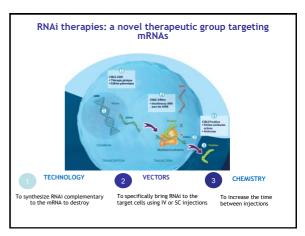
Statements for dialysis

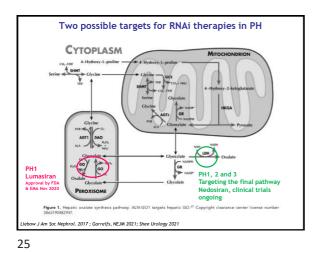

	Statements	Grading
Dialy	sis treatment	
21	We suggest considering kidney replacement therapy before kidney failure has developed in those PH1 patients with a high risk for systemic oxalosis due to high plasma oxalate values or those already suffering from comorbidity	X (moderate recommendation)
22	In case of no access or response to oxalate lowering therapies, we recommend intensified hemodialysis, dose titrated to clinical condition, plasma oxalate levels and according to what the patient and family can tolerate.	X (strong recommendation)
23	We recommend a high flux hemodialyzer (>1m ² capillary surface per 1m ² BSA) with maximal blood flow (>150-200 cm ³ /min/m ² BSA) when performing haemodialysis.	C (moderate recommendation)
24	We recommend personalising the dialysis regimen based on clinical observations of oxalosis and plasma oxalate values, aiming to keep plasma oxalate values in the range of non PH patients with kidney failure.	X (strong recommendation)





PH1: a severe renal disease requiring liver/kidney Tx 100-90 -----80 70 Graft survival --- non-PH KTx 60---- PH L-KTx 50 40---- PH KTX 30 20 l..... 10 0 ż 4 5 Ó 1 2 Time from first kidney Tx (years) bat cJASN 2012

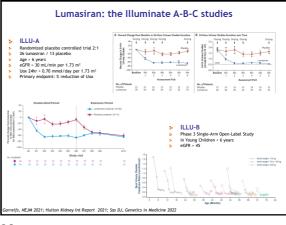

20



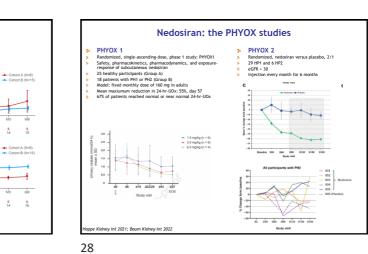
Lumasiran: the Illuminate A-B-C studies

60

-60-


No. of Patients Cohort A: 6 Cohort B: 15

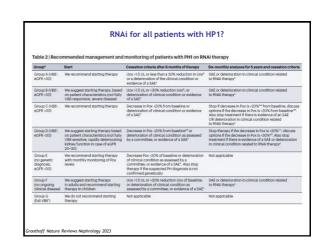
No. of Patients Cohort A: 6 Cohort B: 15 6 6 16 15


6 6

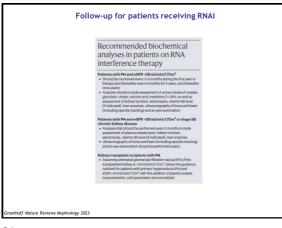
M3 Visi 6 15

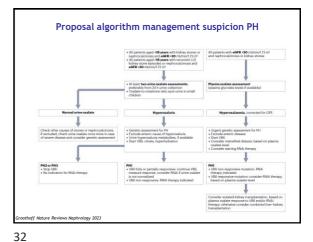
6 13

26

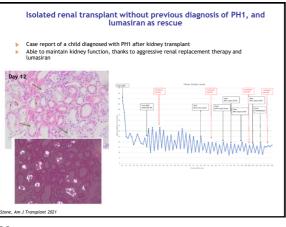


AJKD 2022

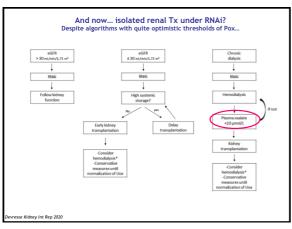

ILLU-C

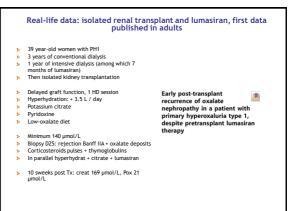

Single-Arm, Phase 3 Study of Lumasiran CKD3b-5, including hemodialysis Full-term infants to adults Cohort A: no HD Cohort B: HD

Isolated renal transplant with a previous diagnosis of PH1, and lumasiran/stiripentol as rescue


PH1 diagnosis before Tx (family screening, p. G170R), decision of isolated kidney Tx because of the absence of extra-renal manifestations and late disease onset 51-year-old patient with a biopsy-proven recurrence of oxalate nephropathy after a kidney-only transplantation.

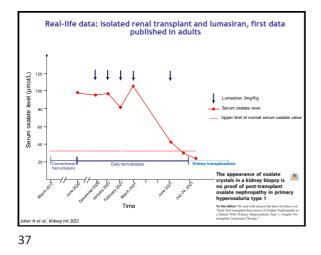
Fourteen months after transplantation, graft function, serum and urinary oxalate levels have remained stable, and kidney biopsy showed a complete regression of oxalate crystals.


Dags 2"

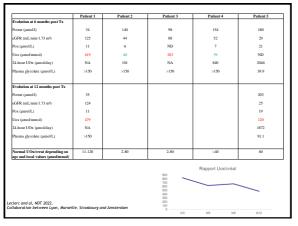

Combination of stiripentol and lumasiran without adverse events.

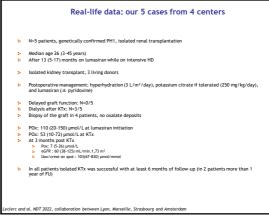
31

33


oher N et al, Kidney Int 2022

5


8


8

AJKD 2023

	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
Age at diagnosis (years)	1.5	17	6	8	8
Age of ESKD (years)	0.5	23	12	27	43
Genotype	Homozygous c.731T>C	Compound heterozygous c.[508G>A]; [847-1G>C]		Compound heterozygous c.[33dup];[847-11G>C]	Compound heterozygou c.[33del] :[454T>A]
Predicted pyridoxin sensitivity	Unclear	Responsive	Unclear	Non responsive	Partly responsive
Time on dialysis before lumasiran initiation (months)	10	36	60	0	8
POx (µmol/l) before lumasiran initiation	110	20	128	150	91
Plasma Glycolate (µmol/l) before lumasiran initiation		<8	229	460	49
Time between lumasiran initiation and Tx (months)	13	10	17	13	5
Age at Tx (years)	3	26	18	28	45
Renal graft	Deceased donor	Living donor	Deceased donor	Living donor	Living donor
Pox at Tx (µmol/l)	53	10	65	72	49
Plasma Glycolate (µmol/l) at Tx	>150µmol/L	114 µmol/1	> 150 µmol/1	>150	68.6
Delayed graft function	No	No	No	No	No
Dialysis after Tx	Yes	No	Yes	Yes	No
SOC hyperhydration	Yes	Yes	Yes	Yes	Yes
SOC urine alkalinization	Yes	No	After month 4	Yes	Yes
Pyridoxine	Yes	Yes	Yes	No	Yes
Renal lithiasis after Tx on renal US	Yes	No	No	No	No
Nephrocalcinosis of the graft on renal US	No	No	No	No	No
Biopsy of the graft	Yes (M3 and M7)	Yes (M2)	No	Yes (M1.5)	Yes
	No oxalate deposit	No oxalate deposit		Oxalate deposit (N=1) At M4 : no oxalate deposit	No oxalate deposit

	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
Evolution at 1 month post Tx			Under dialysis		
Pcreat (µmol/l)	30	133	345	140	142
GFR (mL/min/1.73 m ²)	125	48	22	60	38
Pox (µmol/L)	14	3	28	5	14
Uox (µmol/mmol)	519	67	245	78	90
24-hour UOx (μmol/day)	NA	396	NA	1035	1152
Plasma glycolate (µmol/L)	>150	>150	>150	>150	73.9
Evolution at 3 months post Tx					
Pcreat (µmol/l)	29	150	93	145	144
GFR (mL/min/1.73 m2)	125	41	88	60	38
Pox (µmol/L)	14	3	26	7	7
Uox (µmol/mmol)	830	103	345	67	90
24-hour UOx (μmol/day)	NA	180	NA	1278	1369
Plasma glycolate (µmol/L)	>150	>150	> 150	>150	21.3
Normal UOx/creat depending on	11-120	2-80	2-80	-:40	60
age and local values (µmol/mmol)					

Leclerc and al, NDT 2022, collaboration between Lyon, Marseille, Strasbourg and Amsterdam

- A lot of questions remain open
 Pending ancillary analyses in Illu-C: bone release, outcomes after Tx (if performed)
 We need to confirm the possibility of doing isolated remail Tx under RNAI therapies on larger cohorts
 Could we imagine performing isolated remail Tx with RNAI and then stop RNAI when the post-operative situation is abilitizen in 86 semitive patients?
- Knowledge in the field is changing quickly... Stay tuned!