

PD without Residual Kidney Function: Should We Keep Going?

SHWETA BANSAL, MD, FASN CLINICAL PROFESSOR OF MEDICINE DIRECTOR, HOME DIALYSIS PROGRAM UNIVERSITY OF TEXAS HEALTH AT SAN ANTONIO SAN ANTONIO, TX

Disclosure

Speaker Bureau

- PD Excellence Academy
- ► Home Dialysis University

► <u>Honorarium</u>

► UpToDate

Bansals3@uthscsa.edu

Case presentation

65y/m with DM, CAD s/p stenting, ESRD on PD, active on transplant list but no donor

- started with Residual kidney function (RKF) 4 ml/min
- ▶ PET 0.56
- ▶ NIPD 2.3 If x 3 exchanges over 9 hours
- Over next two years, his PD script was slowly increased to match the loss in his kidney function.
- Current prescription
 - 2.3 It x 4 exchanges over 9 hours
 - ► 2 It last fill
- Recently, < 50 cc urine/day</p>
 - Clinically: no anorexia, weight loss, fatigue, insomnia
 - ▶ Labs: Hgb at goal on stable ESA dose, CO2; 25 meq/L, K: 3.8 meq/L
 - ▶ Intermittently high Phos and PTH: since the beginning of dialysis.
 - ► Kt/V 1.58

Should We Continue on PD or Transfer to HD?

► Yes

► No

May be

Why are we asking this question?

- CANUSA Prospective cohort study of 680 PD patients in Canada and USA for 3 years
- Re-analysis of variables as

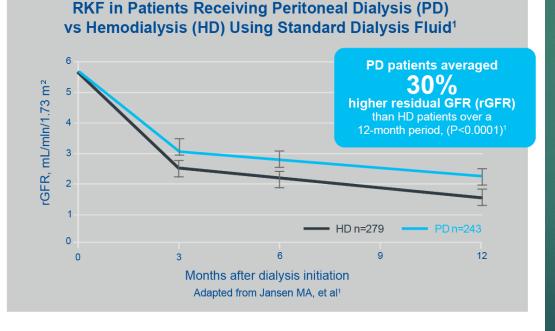
Age CVD

- Retrospective review to study the cause of death
- 296 peritoneal dialysis over a 7-year

predic Over-interpretation of data – low RKF is not good for PD patients.

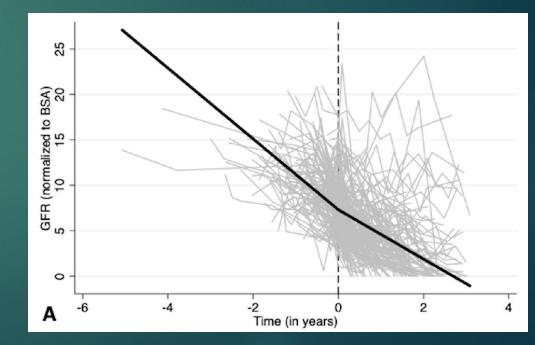
Diabetes mellitus	1.25	0.769–2.036
Serum albumin	0.96	0.912 - 1.000
LA transport	1.66	0.379-7.218
HA transport	2.33	0.554-9.801
H transport	2.01	0.430-9.357
SGA	0.74	0.647-0.842
Cerp (5 L/wk per 1.73 m ² greater)	1.00	0.898-1.105
GFR (5 L/wk per 1.73 m ² greater)	0.88	0.829-0.943

^a CVD, cardiovascular disease; LA, low average; HA, high average; H, high; SGA, subjective global assessment.


(patient-year)				
Causes of death				
Vascular diseases	82	60	1.96 (1.42-2.71)	< 0.0001
Infections	41	41	1.44 (0.94–2.20)	0.1
Others	26	46	0.81 (0.51–1.31)	0.39
All causes	149	147	1.46 (1.18–1.80)	0.0005
All causes	149	14/	1.40 (1.10–1.00)	0.000

Bargman et al. J Am Soc Nephrol 12: 2158–2162, 2001

Szeto et al. Nephrol Dial Transplant (2003) 18: 977–982


Better preservation of RKF in PD

NECOSAD2 - 24-hour average urine urea and creatinine clearance

Jansen et al. Kidney International, Vol. 62 (2002), 1046–1053

- IDEAL study average of 24-hour urine urea and creatinine clearance
 - Before: -4.09±0.33mL/min/1.73m²/yr
 - After: -2.69±0.18mL/min/1.73m²/yr

Ethier I et al. (2020) PLoS ONE 15(11): e0242254.

Reverse Psychology

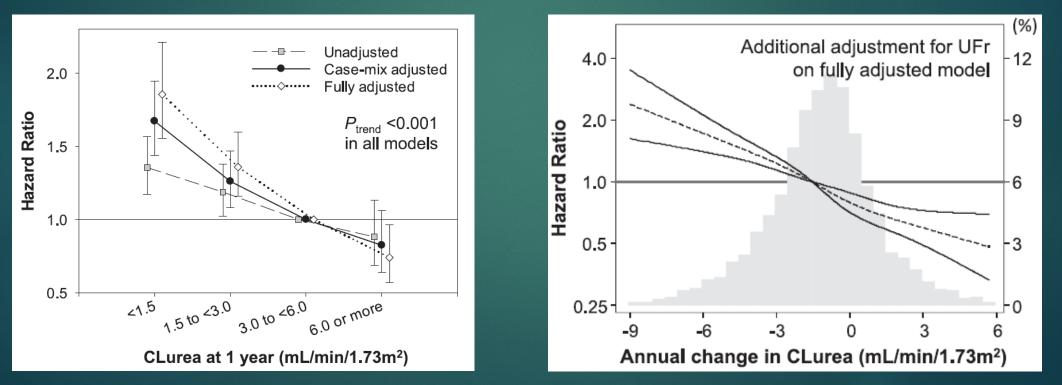
- ► PD preserves RKF better
- Survival in PD patients depends on residual kidney function
- Multiple commentaries
 - Peritoneal clearances are not equivalent to clearances achieved by kidneys
 - Better management of anemia
 - Better control of hyperphosphatemia
 - Better volume and BP control

So prevailing opinion: once RKF is gone, it is not good for the PD patients.

Transfer to Hemodialysis (Technique Failure) due to inadequate dialysis (real or perceived)

Canadian PD patients: temporal trends in 2000-2009 compared to1995 to 2000 (n=13,000)

- Inadequate PD increased in 2001-2005 but decreased in 2005-2009
- Reduced peritonitis but no difference in peritonitis related technique failure in 2001-2009 cohort compared to 1995-2000


Australia/New Zealand 1989-2014 cohort (n=9,649)

- ► Infection (52%)
- Inadequate dialysis (19%)
- Mechanical failure (18%) and Social reasons (11%)

Perl et al. Clin J Am Soc Nephrol 7: 1145–1154, 2012 Chen et al. SCIeNTIFIC RePorts | (2018) 8:3980

Mortality on HD with progressive loss of RKF

- Iongitudinal cohort of 6538 patients on MHD over a 4-year period (2007 2010)
- had renal urea clearance (CLurea) data at baseline and 1 year after initiation

Obi et al. J Am Soc Nephrol 27: 3758–3768, 2016

The goal is to provide adequate dialysis. What is adequate dialysis?

Not just Kt/V

The ability of the dialysis patients to meet the needs and demands of the body at all times to maintain satisfactory performance in the steady state.

In broad sense control of

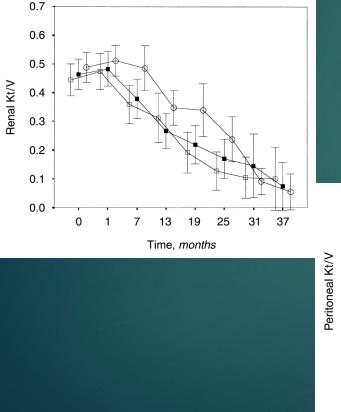
- Generalized well being including functional status
- BP and volume status
- Acid base homeostasis and nutrition
- Cardiovascular risk
- Mineral and bone disorders
- Small and middle molecule clearance

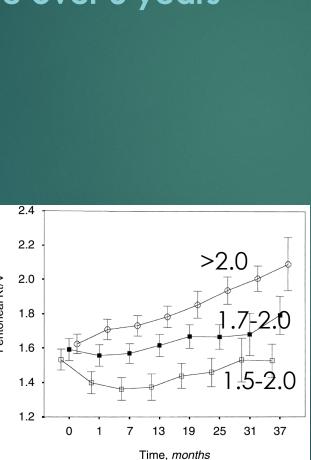
Small solute clearance in Anuric PD Patients

- Retrospective cohort study of anuric PD patients, n=122, 1992-1997
- Number of patients achieving target kt/V

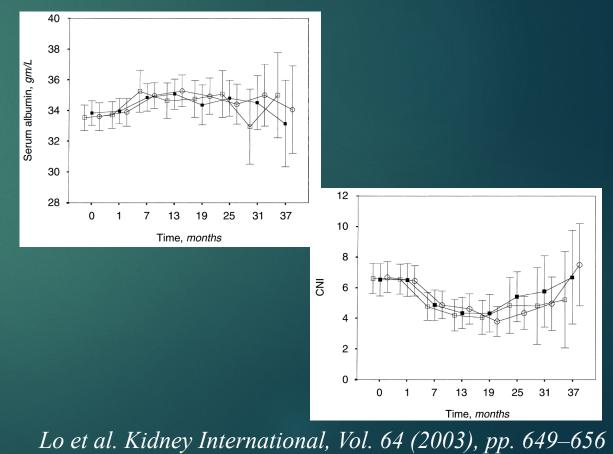
Type of Peritoneal Dialysis (CAPD, APD) and the Number of Patients with Urea and Creatinine Clearances (CCr) Above Targets Recommended by DOQI (Weekly Kt/V of 2 for CAPD, 2.2 for APD; Weekly CCr of 60 L/week for CAPD, 66 L/week for APD)

	CAPD	APD
Total	89	26
Weekly Kt/V ^a	2.07±0.31	2.6 <u>+</u> 0.6
Weekly CCr ^a (L/1.73 m^2)	57.3 <u>+</u> 8.5	65.7 <u>+</u> 18.1
Dialysate volume ^a (L/24 hr)	9.3 <u>+</u> 1.5	15.7 <u>+</u> 2.8
Patients with weekly Kt/V above targets (N)	51 (57%)	21 (81%)
Patients with weekly CCr above targets (N)	31 (35%)	9 (35%)


^a Mean ±SD.

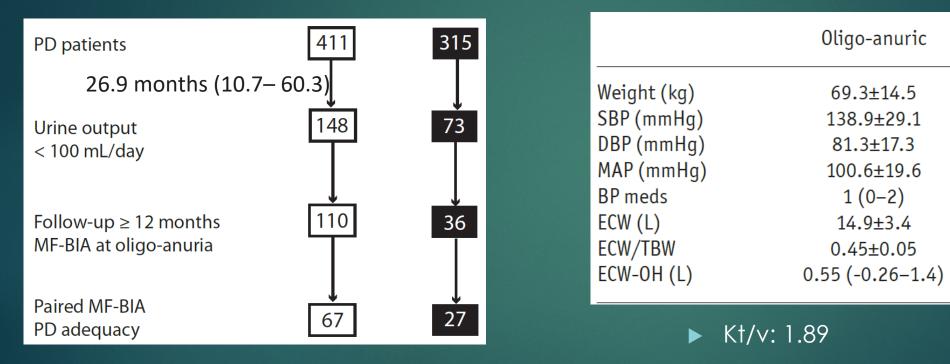

- Mortality was better with kt/v>1.85
- No association between kt/V and technique failure

Bhaskaran et al, (Toronto grp). Peri Dial Int 2000; vol. 20, 181-187


Hong Kong PD Adequacy Study: Drop in RKF didn't associate with poor nutrition

Drop in RKF and increase in peritoneal clearance over 3 years

No change in albumin or Composite nutrition index (CNI)



No difference in weight and markers of nutrition

						Anuric	Not anuric
	Anuric	Not anuric	RR (95% CI)	<i>P</i> -value	No. of patients Duration of dialysis (months)	$149 \\ 59.7 \pm 30.3$	147 23.3 ± 22.4
Population of dialysis (patient-year)	1030	1480			Body weight (kg) Body height (m)	$\frac{58.2 \pm 10.3}{1.61 \pm 0.09}$	$\frac{59.7 \pm 9.4}{1.62 \pm 0.08}$
Causes of death Vascular diseases Infections	82 41	60 41	1.96 (1.42–2.71) 1.44 (0.94–2.20)	<0.0001 0.1	Kt/V CCr (l/week/1.73 m ²)	1.62 ± 0.33 41.0 ± 9.5	1.64 ± 0.36 46.0 ± 11.8
Others All causes	26 149	46 147	0.81 (0.51–1.31) 1.46 (1.18–1.80)	0.39 0.0005	Serum albumin (g/l) NPNA (g/kg/day)	26.1 ± 4.7 0.91 ± 0.16	26.4 ± 4.8 0.92 ± 0.22
					%LBM	59.6 ± 10.6	57.8 ± 11.6

Szeto et al. Nephrol Dial Transplant (2003) 18: 977–982

Blood Pressure and Volume Status in Anuric PD Patients

No reason given for drop from 148 to 110 (25%)

▶ 48% to 72% icodextrin

Fan et al. Peritoneal Dialysis International, Vol. 35, pp. 753–771

On follow-up^{a,b}

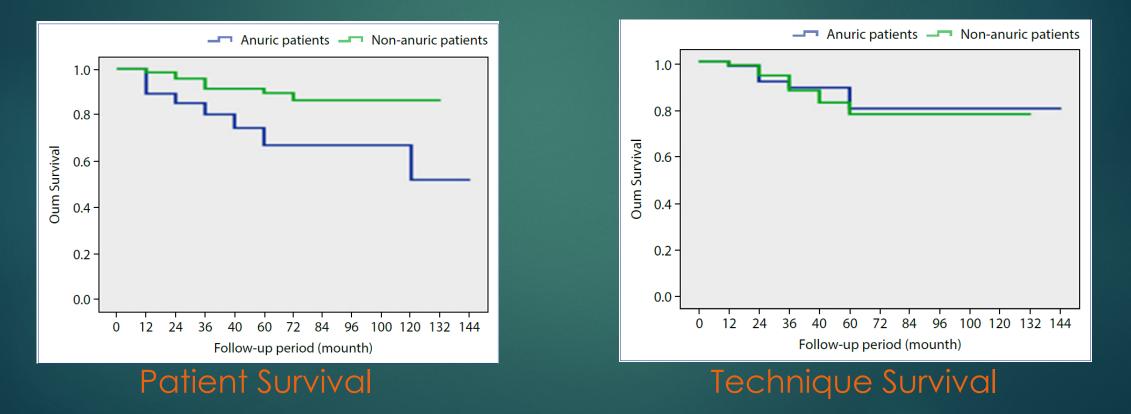
69.3±15.4

 134.9 ± 26.3

78.6±15.6

 97.4 ± 7.6

1(0-1)(p=0.09)


14.6 + 3.4

 0.45 ± 0.05

0.4(-0.22-1.4)

RKF and Technique Failure: Turkey Experience

2000-2010: At the PD initiation, 58 patients with anuria and 144 patients without anuria.

Ahbap et al. Med Bull Sisli Etfal Hosp 2018;52(3):184–189

Bottom Line, so far

- Residual kidney function impacts the survival and quality of life of dialysis patients.
- Its longer preservation is a major advantage to any dialysis patient (hemo or PD) and should be the goal for every dialysis patient.
- Anuric patients no longer benefit from such advantage, depend on dialysis to achieve adequate solute and volume control.
- This challenge can be successfully dealt with by individualizing the dialysis prescription and lifestyle changes.
 - More APD use
 - Icodextrin use for volume homeostasis
- PD allows a satisfactory patient survival while keeping the benefits of home dialysis and preserving vascular network.
- An integrated and individualized care plan responsibilities lie on us

Carvalho et al. Contrib Nephrol 2009;163:155-160

Response to Inadequate Dialysis – CMS ESRD PD Clinical Performance Measures Project

	Time Period 1	Time Period 2	Total	No. (%) of Patients		60% were
Kt/V $<$ 2.0 and CrCl $<$ 60.0 L/week/1.73m ² (no. of patients)	127	61	188			anuric
Change in prescription (no. of patients)	56	25	81			
Changed prescription information recorded	46	19	65			Other reasons
Change in total prescribed daily volume						Omerieusons
+ 2000 mL				35 (55)		► Liah BSA or
+ 2500 mL				11 (17)		► High BSA or
+ 3000 mL				6 (9)		Vd
Other volume change				12 (19)		
Change in number of exchanges						
From						78-86% had
3 exchanges \rightarrow 4 exchanges				3 (5)	-	
4 exchanges \rightarrow 5 exchanges				26 (41)		improved Kt/V
5 exchanges \rightarrow 6 exchanges				3 (5)		after change
4 exchanges \rightarrow 6 exchanges				1 (2)		
No change in number of exchanges				31 (48)		in script.

Approach

Preservation of RKF

Adequate solute clearance and maintenance of volume homeostasis while being cognizant of burden of increased exchanges or extra volume on quality of life

Volume homeostasis

- Constant reminder of need of healthy dietary behaviors
- Icodextrin for long fills to avoid neg UF, rather gain some positive UF
- Careful review of flowsheets to monitor drain times and UF
 - Constipation is common in this patient population and leads to poor catheter function

2 slices of bread = 800 mg Slice of cheese = 300 mg Layer/s of meat = 800 mg Mayo = 100 mg Mustard=100 mg Bag of chips = 250-500 mg

> Na= 2600 mg Added inorg PO₄

Achieving Solute Clearance

Automated PD

- Allows more frequent exchanges and higher total volume
- Increase small solute clearance
- Increase dwell volume
 - Nighttime to up to 3 It
- Last fill and Mid-day exchange (post work)
 - Increase middle molecule clearance
- Use of adjusted body weight to calculate Vd in obese patients since the body water proportion is less in adjpocytes
 - Adjusted wt = Ideal weight + [0.4 x (actual wt ideal wt)]
- Limitations
 - High muscle mass, low transporter status

PD without Residual Kidney Function: Should We Keep Going?

> YES, as long as adequate dialysis is achieved

- Patient is happy, functional and free of uremic symptoms
- Achieves euvolemia and good BP control
- Meets anemia goals, control of acidosis, hyperkalemia etc.
- Kt/V may or may not be at goal

THANK YOU!