

 Children's National.

Stump the Consultants: Case Presentation

March 4, 2023 | Jennifer Nhan, MD MSc, Pediatric Nephrology Fellow

Disclosure

I do not have anything to disclose.

Case Presentation

9-year-old girl with end-stage kidney disease secondary to perinuclear anti-neutrophil cytoplasmic antibodies (p-ANCA) vasculitis maintained on intermittent hemodialysis for over 1-year.

On routine monthly labs, she was found to have a phosphorous level of 0.7 mg/dL. Repeat labs obtained showed phosphorous of 1 mg/dL.

She was asymptomatic and physical exam was normal.

Medical History

Past Medical History	Past Surgical History	Family History
<ul style="list-style-type: none">• ESKD 2/2 p-ANCA Vasculitis• Posterior Reversible Encephalopathy Syndrome	<ul style="list-style-type: none">• HD catheter placement	<ul style="list-style-type: none">• No family history of kidney disease, hypertension, autoimmune diseases, dialysis or kidney transplant

Laboratory Findings

	Value (mg/dL)		Value
Sodium	140	Calcium	10.2 mg/dL
Potassium	4.2	Albumin	3.4
Chloride	103	Intact PTH	104 pg/mL
CO2	26	Alkaline phosphatase	150 u/L
BUN	35	Vitamin D 25-OH	22.5 ng/mL
Creatinine	6.49	Vitamin D 1,25 DiHydroxy	< 8
Glucose	99	Vitamin D3 1,25 DiHydroxy	<8
Phosphorous	1	Vitamin D 2 1,25 DiHydroxy	<8

Children's National

Medications

Medications	
Albuterol 90 mcg/inh as needed	Lansoprazole 30 mg daily
Amlodipine 10 mg daily	Miralax 17 g daily
Aspirin 81 mg daily	Nephronex 3 mL daily
Cholecalciferol 2000 U daily	Prednisone 10 mg daily
Flovent 110 mcg/inh twice daily	Senna 8.6 mg daily
Folic Acid 2 mg daily	Venofer 32 mg IV weekly
Labetalol 50 mg twice daily	Zyrtec 5 mg daily

Question 1: What is the differential diagnosis for hypophosphatemia in this patient?

Question 1.5: What would you do next for this patient?

Initial Management

- Sodium phosphate 11 mMol IV bolus
- Repeat phosphorous level: 2.7 mg/dL
- Calcium carbonate was taken appropriately away from meals
 - Discontinued with normal calcium levels
- Started K-Phos Neutral tablets for supplemental phosphorous
- Encouraged increasing nutritional intake of cheese and other phosphorous containing foods

Differential diagnosis for hypophosphatemia

Urinary phosphate wasting

Chronic use of calcium carbonate or other phosphorous binders

Decreased nutritional intake

Gastrointestinal malabsorption

Differential diagnosis for hypophosphatemia

Urinary Phosphate Wasting

- Patient is anuric

Chronic use of phosphorous binders

- Calcium carbonate was taken as prescribed, away from meals

Decreased nutritional intake

- Normalized protein catabolic rate was 1.05 g/kg/day

Gastrointestinal malabsorption

- No abdominal pain, diarrhea or vomiting

Question 2: What are some medications or supplements that can cause hypophosphatemia?

Medications that may cause hypophosphatemia

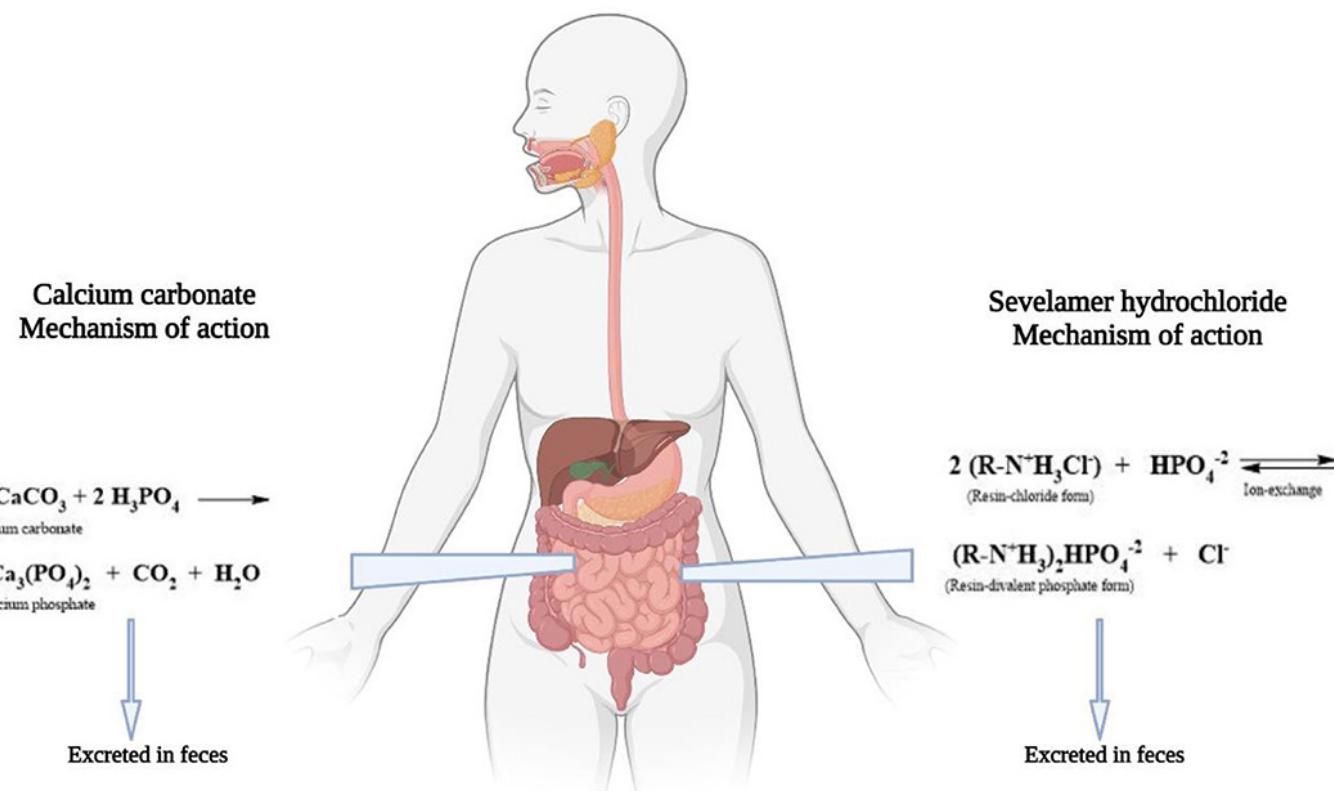
Decreased intestinal phosphate absorption

- Phosphorous binders

Shifts of extracellular phosphate into cells

- Salicylate poisoning
- Catecholamine action: epinephrine, dopamine, xanthine

Increased urinary phosphate excretion


- Carbonic anhydrase inhibitors
- Diuretics
- Theophylline
- Bisphosphonates
- Anticonvulsants

Children's National

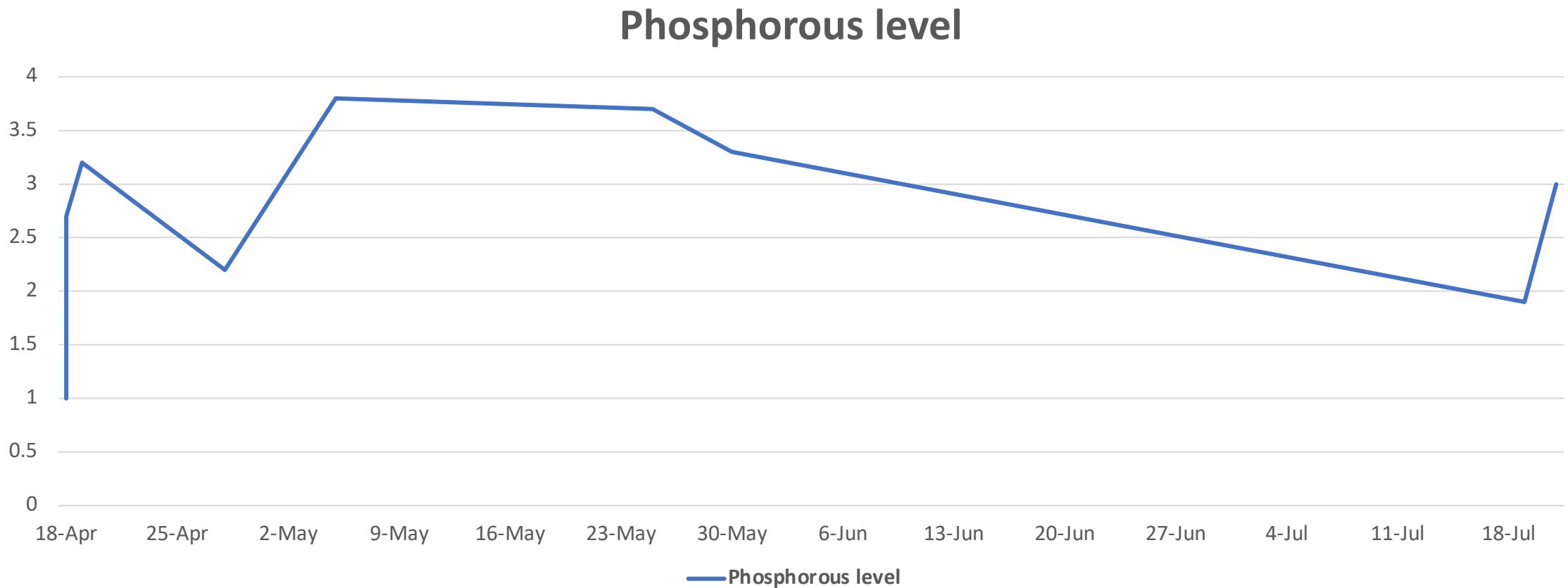
Phosphorous Binders

- Mechanism of action: reduce serum phosphorous levels by binding to ingested phosphorous in the gastrointestinal tract.
 - Forms insoluble complexes that are not absorbed

Children's National

Common Phosphorous Binders

Calcium-containing binders


- Calcium carbonate
- Calcium acetate

Calcium-free binders

- Aluminum-based binders
- Magnesium-based binders
- Sevelamer
- Lanthanum
- Sucroferric oxyhydroxide

Back to our patient – after our initial management

Our patient continued

- During a session in dialysis – a nurse had mentioned chalk, in which the patient reports she sometimes consumes.
- On further investigating – we discovered the type of chalk she may have been consuming.
- Calabash chalk – generic term to describe geophagical elements
 - Consumed by many pregnant women and breastfeeding mothers as a remedy to morning sickness and increased appetite
 - Sold in raw form or processed form by combining with clay, sand, wood ash or salt
- Geophagia – deliberate or accidental ingestion of soil by humans
 - Practiced in countries of West Africa and South Asia

Children's National

Components of Calabash chalk

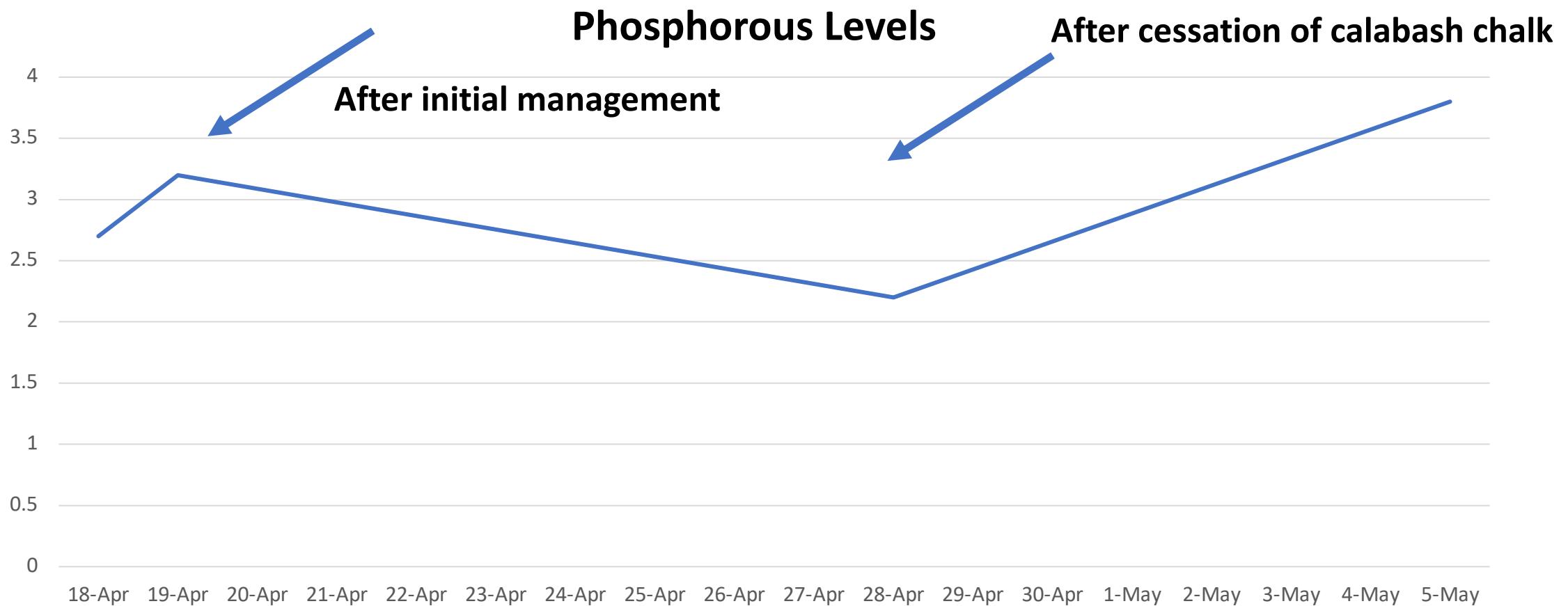
- Very few studies on analysis of calabash chalk
- Available data indicates that calabash chalk contains heavy metals
 - Aluminum silicate hydroxide
 - Primarily aluminum due to presence of kaolin clay group
 - Lead
 - Arsenic
 - Chromium

Aluminum as a phosphorous binder

- Aluminum containing phosphorous binders were historically used as treatment for hyperphosphatemia
- In the 1980s, due to aluminum related neurological and bone disease, led to avoidance of aluminum-containing phosphate binders
- Despite limited data, KDIGO and KDOQI guidelines both suggest avoidance of aluminum-containing binders

Additional Laboratory Findings

	Value	Normal Reference Values
<i>Aluminum</i>	8 mcg/L	< 7 mcg/L
<i>Arsenic</i>	10 mcg/L	< 5 mcg/L
<i>Lead</i>	2.7 mcg/L	< 3.5 mcg/L



Children's National

Case Continued

- Aluminum, arsenic and lead were in non-toxic levels
- Primary team asked patient and parents to discontinue any further consumption of calabash chalk
- Phosphorous levels were slowly repleted with oral supplementation and increased dietary phosphorous consumption
- After 1-month, oral supplementation of phosphorous was discontinued and the patient maintained normal levels of phosphorous on monthly labs

Case Continued

Key Points

- Aluminum and other cations such as lead, magnesium and iron are potent phosphorous binder
- Detailed supplement, nutritional and medication history can reveal pertinent etiologies for electrolyte derangements
- History taking is pertinent in elucidating certain cultural or ethnic practices that may be unfamiliar to providers

References

- 1) Bright Owhorji, Udemeobong Okon, Azubuike Nwankwo, Eme Osim, Chronic consumption of calabash chalk diet impairs locomotor activities and social behaviour in Swiss white Cd-1 mice, *Heliyon*, Volume 5, Issue 6, 2019, e01848, ISSN 2405-8440, <https://doi.org/10.1016/j.heliyon.2019.e01848>.
- 2) Mudge DW, Johnson DW, Hawley CM, Campbell SB, Isbel NM, van Eps CL, Petrie JJ. Do aluminium-based phosphate binders continue to have a role in contemporary nephrology practice? *BMC Nephrol.* 2011 May 13;12:20. doi: 10.1186/1471-2369-12-20. PMID: 21569446; PMCID: PMC3107169.
- 3) J.R Dean, M.E Deary, B.K Gbefa, W.C Scott, Characterisation and analysis of persistent organic pollutants and major, minor and trace elements in Calabash chalk, *Chemosphere*, Volume 57, Issue 1, 2004, Pages 21-25, ISSN 0045-6535, <https://doi.org/10.1016/j.chemosphere.2004.05.023>.
- 4) G. Liamis, H.J. Milionis, M. Elisaf, Medication-induced hypophosphatemia: a review, *QJM: An International Journal of Medicine*, Volume 103, Issue 7, July 2010, Pages 449–459, <https://doi.org/10.1093/qjmed/hcq039>

Acknowledgements

- Mentors: Dr. Catherine Park
- Diane Kraynak
- Co-fellow
- Dialysis nurses

